Asyptotic Normality for Maximum Likelihood Estimation and Operational Risk
Paul Larsen
Papers from arXiv.org
Abstract:
Operational risk models commonly employ maximum likelihood estimation (MLE) to fit loss data to heavy-tailed distributions. Yet several desirable properties of MLE (e.g. asymptotic normality) are generally valid only for large sample-sizes, a situation rarely encountered in operational risk. In this paper, we study how asymptotic normality does--or does not--hold for common severity distributions in operational risk models. We then apply these results to evaluate errors caused by failure of asymptotic normality in constructing confidence intervals around the MLE fitted parameters.
Date: 2015-08, Revised 2016-08
New Economics Papers: this item is included in nep-ecm and nep-rmg
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://arxiv.org/pdf/1508.02824 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1508.02824
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().