Non-zero-sum stopping games in discrete time
Zhou Zhou
Papers from arXiv.org
Abstract:
We consider two-player non-zero-sum stopping games in discrete time. Unlike Dynkin games, in our games the payoff of each player is revealed after both players stop. Moreover, each player can adjust her own stopping strategy according to the other player's action. In the first part of the paper, we consider the game where players act simultaneously at each stage. We show that there exists a Nash equilibrium in mixed stopping strategies. In the second part, we assume that one player has to act first at each stage. In this case, we show the existence of a Nash equilibrium in pure stopping strategies.
Date: 2015-08
New Economics Papers: this item is included in nep-gth, nep-hpe and nep-mic
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/1508.06032 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1508.06032
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators (help@arxiv.org).