EconPapers    
Economics at your fingertips  
 

Forecasting Electricity Spot Prices using Lasso: On Capturing the Autoregressive Intraday Structure

Florian Ziel

Papers from arXiv.org

Abstract: In this paper we present a regression based model for day-ahead electricity spot prices. We estimate the considered linear regression model by the lasso estimation method. The lasso approach allows for many possible parameters in the model, but also shrinks and sparsifies the parameters automatically to avoid overfitting. Thus, it is able to capture the autoregressive intraday dependency structure of the electricity price well. We discuss in detail the estimation results which provide insights to the intraday behavior of electricity prices. We perform an out-of-sample forecasting study for several European electricity markets. The results illustrate well that the efficient lasso based estimation technique can exhibit advantages from two popular model approaches.

Date: 2015-09, Revised 2016-01
New Economics Papers: this item is included in nep-ene and nep-for
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (90)

Published in IEEE Transactions on Power Systems, 31.6 (2016) 4977-4987

Downloads: (external link)
http://arxiv.org/pdf/1509.01966 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1509.01966

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:1509.01966