Law invariant risk measures and information divergences
Daniel Lacker
Papers from arXiv.org
Abstract:
A one-to-one correspondence is drawn between law invariant risk measures and divergences, which we define as functionals of pairs of probability measures on arbitrary standard Borel spaces satisfying a few natural properties. Divergences include many classical information divergence measures, such as relative entropy and $f$-divergences. Several properties of divergence and their duality with law invariant risk measures are developed, most notably relating their chain rules or additivity properties with certain notions of time consistency for dynamic law invariant risk measures known as acceptance and rejection consistency. These properties are linked also to a peculiar property of the acceptance sets on the level of distributions, analogous to results of Weber on weak acceptance and rejection consistency. Finally, the examples of shortfall risk measures and optimized certainty equivalents are discussed in some detail, and it is shown that the relative entropy is essentially the only divergence satisfying the chain rule.
Date: 2015-10, Revised 2016-06
New Economics Papers: this item is included in nep-rmg
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://arxiv.org/pdf/1510.07030 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1510.07030
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().