EconPapers    
Economics at your fingertips  
 

Conditional Value-at-Risk: Theory and Applications

Jakob Kisiala

Papers from arXiv.org

Abstract: This thesis presents the Conditional Value-at-Risk concept and combines an analysis that covers its application as a risk measure and as a vector norm. For both areas of application the theory is revised in detail and examples are given to show how to apply the concept in practice. In the first part, CVaR as a risk measure is introduced and the analysis covers the mathematical definition of CVaR and different methods to calculate it. Then, CVaR optimization is analysed in the context of portfolio selection and how to apply CVaR optimization for hedging a portfolio consisting of options. The original contributions in this part are an alternative proof of Acerbi's Integral Formula in the continuous case and an explicit programme formulation for portfolio hedging. The second part first analyses the Scaled and Non-Scaled CVaR norm as new family of norms in $\mathbb{R}^n$ and compares this new norm family to the more widely known $L_p$ norms. Then, model (or signal) recovery problems are discussed and it is described how appropriate norms can be used to recover a signal with less observations than the dimension of the signal. The last chapter of this dissertation then shows how the Non-Scaled CVaR norm can be used in this model recovery context. The original contributions in this part are an alternative proof of the equivalence of two different characterizations of the Scaled CVaR norm, a new proposition that the Scaled CVaR norm is piecewise convex, and the entire \autoref{chapter:Recovery_using_CVaR}. Since the CVaR norm is a rather novel concept, its applications in a model recovery context have not been researched yet. Therefore, the final chapter of this thesis might lay the basis for further research in this area.

Date: 2015-10
New Economics Papers: this item is included in nep-rmg
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://arxiv.org/pdf/1511.00140 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1511.00140

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators (help@arxiv.org).

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:1511.00140