Optimal Real-Time Bidding Strategies
Joaquin Fernandez-Tapia,
Olivier Gu\'eant and
Jean-Michel Lasry
Papers from arXiv.org
Abstract:
The ad-trading desks of media-buying agencies are increasingly relying on complex algorithms for purchasing advertising inventory. In particular, Real-Time Bidding (RTB) algorithms respond to many auctions -- usually Vickrey auctions -- throughout the day for buying ad-inventory with the aim of maximizing one or several key performance indicators (KPI). The optimization problems faced by companies building bidding strategies are new and interesting for the community of applied mathematicians. In this article, we introduce a stochastic optimal control model that addresses the question of the optimal bidding strategy in various realistic contexts: the maximization of the inventory bought with a given amount of cash in the framework of audience strategies, the maximization of the number of conversions/acquisitions with a given amount of cash, etc. In our model, the sequence of auctions is modeled by a Poisson process and the \textit{price to beat} for each auction is modeled by a random variable following almost any probability distribution. We show that the optimal bids are characterized by a Hamilton-Jacobi-Bellman equation, and that almost-closed form solutions can be found by using a fluid limit. Numerical examples are also carried out.
Date: 2015-11, Revised 2016-06
New Economics Papers: this item is included in nep-ore
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://arxiv.org/pdf/1511.08409 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1511.08409
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators (help@arxiv.org).