On Game-Theoretic Risk Management (Part Two) -- Algorithms to Compute Nash-Equilibria in Games with Distributions as Payoffs
Stefan Rass
Papers from arXiv.org
Abstract:
The game-theoretic risk management framework put forth in the precursor work "Towards a Theory of Games with Payoffs that are Probability-Distributions" (arXiv:1506.07368 [q-fin.EC]) is herein extended by algorithmic details on how to compute equilibria in games where the payoffs are probability distributions. Our approach is "data driven" in the sense that we assume empirical data (measurements, simulation, etc.) to be available that can be compiled into distribution models, which are suitable for efficient decisions about preferences, and setting up and solving games using these as payoffs. While preferences among distributions turn out to be quite simple if nonparametric methods (kernel density estimates) are used, computing Nash-equilibria in games using such models is discovered as inefficient (if not impossible). In fact, we give a counterexample in which fictitious play fails to converge for the (specifically unfortunate) choice of payoff distributions in the game, and introduce a suitable tail approximation of the payoff densities to tackle the issue. The overall procedure is essentially a modified version of fictitious play, and is herein described for standard and multicriteria games, to iteratively deliver an (approximate) Nash-equilibrium. An exact method using linear programming is also given.
Date: 2015-11, Revised 2020-04
New Economics Papers: this item is included in nep-gth, nep-hpe and nep-rmg
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://arxiv.org/pdf/1511.08591 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1511.08591
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().