A comparison among some Hurst exponent approaches to predict nascent bubbles in $500$ company stocks
M. Fern\'andez-Mart\'inez,
M. A S\'anchez-Granero,
Mar\'ia Jos\'e Mu\~noz Torrecillas and
Bill McKelvey
Papers from arXiv.org
Abstract:
In this paper, three approaches to calculate the self-similarity exponent of a time series are compared in order to determine which one performs best to identify the transition from random efficient market behavior (EM) to herding behavior (HB) and hence, to find out the beginning of a market bubble. In particular, classical Detrended Fluctuation Analysis (DFA), Generalized Hurst Exponent (GHE) and GM2 (one of Geometric Method-based algorithms) were applied for self-similarity exponent calculation purposes. Traditionally, researchers have been focused on identifying the beginning of a crash. Instead of this, we are pretty interested in identifying the beginning of the transition process from EM to a market bubble onset, what we consider could be more interesting. The relevance of self-similarity index in such a context lies on the fact that it becomes a suitable indicator which allows to identify the raising of HB in financial markets. Overall, we could state that the greater the self-similarity exponent in financial series, the more likely the transition process to HB could start. This fact is illustrated through actual S\&P500 stocks.
Date: 2016-01
New Economics Papers: this item is included in nep-fmk
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/1601.04188 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1601.04188
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().