EconPapers    
Economics at your fingertips  
 

A pathwise approach to continuous-time trading

Candia Riga

Papers from arXiv.org

Abstract: This paper develops a mathematical framework for the analysis of continuous-time trading strategies which, in contrast to the classical setting of continuous-time mathematical finance, does not rely on stochastic integrals or other probabilistic notions. Our purely analytic framework allows for the derivation of a pathwise self-financial condition for continuous-time trading strategies, which is consistent with the classical definition in case a probability model is introduced. Our first proposition provides us with a pathwise definition of the gain process for a large class of continuous-time, path-dependent, self-finacing trading strategies, including the important class of 'delta-hedging' strategies, and is based on the recently developed 'non-anticipative functional calculus'. Two versions of the statement involve respectively continuous and c\`adl\`ag price paths. The second proposition is a pathwise replication result that generalizes the ones obtained in the classical framework of diffusion models. Moreover, it gives an explicit and purely pathwise formula for the hedging error of delta-hedging strategies for path-dependent derivatives across a given set of scenarios. We also provide an economic justification of our main assumption on price paths.

Date: 2016-02
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)

Downloads: (external link)
http://arxiv.org/pdf/1602.04946 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1602.04946

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:1602.04946