EconPapers    
Economics at your fingertips  
 

Pricing and Hedging GMWB in the Heston and in the Black-Scholes with Stochastic Interest Rate Models

Ludovic Gouden\`ege, Andrea Molent and Antonino Zanette

Papers from arXiv.org

Abstract: Valuing Guaranteed Minimum Withdrawal Benefit (GMWB) has attracted significant attention from both the academic field and real world financial markets. As remarked by Yang and Dai, the Black and Scholes framework seems to be inappropriate for such a long maturity products. Also Chen Vetzal and Forsyth in showed that the price of these products is very sensitive to interest rate and volatility parameters. We propose here to use a stochastic volatility model (Heston model) and a Black Scholes model with stochastic interest rate (Hull White model). For this purpose we present four numerical methods for pricing GMWB variables annuities: a hybrid tree-finite difference method and a Hybrid Monte Carlo method, an ADI finite difference scheme, and a Standard Monte Carlo method. These methods are used to determine the no-arbitrage fee for the most popular versions of the GMWB contract, and to calculate the Greeks used in hedging. Both constant withdrawal, optimal surrender and optimal withdrawal strategies are considered. Numerical results are presented which demonstrate the sensitivity of the no-arbitrage fee to economic, contractual and longevity assumptions.

Date: 2016-02, Revised 2016-03
New Economics Papers: this item is included in nep-cmp and nep-ore
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Published in Computational Management Science. February 2019, Volume 16, Issue 1-2, pp 217-248

Downloads: (external link)
http://arxiv.org/pdf/1602.09078 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1602.09078

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:1602.09078