EconPapers    
Economics at your fingertips  
 

Analysis of the nonlinear option pricing model under variable transaction costs

Daniel Sevcovic and Magdalena Zitnanska

Papers from arXiv.org

Abstract: In this paper we analyze a nonlinear Black--Scholes model for option pricing under variable transaction costs. The diffusion coefficient of the nonlinear parabolic equation for the price $V$ is assumed to be a function of the underlying asset price and the Gamma of the option. We show that the generalizations of the classical Black--Scholes model can be analyzed by means of transformation of the fully nonlinear parabolic equation into a quasilinear parabolic equation for the second derivative of the option price. We show existence of a classical smooth solution and prove useful bounds on the option prices. Furthermore, we construct an effective numerical scheme for approximation of the solution. The solutions are obtained by means of the efficient numerical discretization scheme of the Gamma equation. Several computational examples are presented.

Date: 2016-03
New Economics Papers: this item is included in nep-cmp
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://arxiv.org/pdf/1603.03874 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1603.03874

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators (help@arxiv.org).

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:1603.03874