Pathwise Iteration for Backward SDEs
Christian Bender,
Christian Gaertner and
Nikolaus Schweizer
Papers from arXiv.org
Abstract:
We introduce a novel numerical approach for a class of stochastic dynamic programs which arise as discretizations of backward stochastic differential equations or semi-linear partial differential equations. Solving such dynamic programs numerically requires the approximation of nested conditional expectations, i.e., iterated integrals of previous approximations. Our approach allows us to compute and iteratively improve upper and lower bounds on the true solution starting from an arbitrary and possibly crude input approximation. We demonstrate the benefits of our approach in a high dimensional financial application.
Date: 2016-05, Revised 2016-06
New Economics Papers: this item is included in nep-cmp
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/1605.07500 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1605.07500
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().