EconPapers    
Economics at your fingertips  
 

Existence of a calibrated regime switching local volatility model and new fake Brownian motions

Benjamin Jourdain and Alexandre Zhou

Papers from arXiv.org

Abstract: By Gyongy's theorem, a local and stochastic volatility (LSV) model is calibrated to the market prices of all European call options with positive maturities and strikes if its local volatility function is equal to the ratio of the Dupire local volatility function over the root conditional mean square of the stochastic volatility factor given the spot value. This leads to a SDE nonlinear in the sense of McKean. Particle methods based on a kernel approximation of the conditional expectation, as presented by Guyon and Henry-Labord\`ere (2011), provide an efficient calibration procedure even if some calibration errors may appear when the range of the stochastic volatility factor is very large. But so far, no global existence result is available for the SDE nonlinear in the sense of McKean. In the particular case where the local volatility function is equal to the inverse of the root conditional mean square of the stochastic volatility factor multiplied by the spot value given this value and the interest rate is zero, the solution to the SDE is a fake Brownian motion. When the stochastic volatility factor is a constant (over time) random variable taking finitely many values and the range of its square is not too large, we prove existence to the associated Fokker-Planck equation. Thanks to Figalli (2008), we then deduce existence of a new class of fake Brownian motions. We then extend these results to the special case of the LSV model called regime switching local volatility, where the stochastic volatility factor is a jump process taking finitely many values and with jump intensities depending on the spot level. Under the same condition on the range of its square, we prove existence to the associated Fokker-Planck PDE. Finally, we deduce existence of the calibrated model by extending the results in Figalli (2008).

Date: 2016-06, Revised 2017-01
New Economics Papers: this item is included in nep-ger
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://arxiv.org/pdf/1607.00077 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1607.00077

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:1607.00077