EconPapers    
Economics at your fingertips  
 

Application of Malliavin calculus to exact and approximate option pricing under stochastic volatility

S. Kuchuk-Iatsenko, Y. Mishura and Y. Munchak

Papers from arXiv.org

Abstract: The article is devoted to models of financial markets with stochastic volatility, which is defined by a functional of Ornstein-Uhlenbeck process or Cox-Ingersoll-Ross process. We study the question of exact price of European option. The form of the density function of the random variable, which expresses the average of the volatility over time to maturity is established using Malliavin calculus.The result allows calculate the price of the option with respect to minimum martingale measure when the Wiener process driving the evolution of asset price and the Wiener process, which defines volatility, are uncorrelated.

Date: 2016-07
New Economics Papers: this item is included in nep-cse
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://arxiv.org/pdf/1608.00230 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1608.00230

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:1608.00230