EconPapers    
Economics at your fingertips  
 

Volatility and Arbitrage

E. Robert Fernholz, Ioannis Karatzas and Johannes Ruf

Papers from arXiv.org

Abstract: The capitalization-weighted total relative variation $\sum_{i=1}^d \int_0^\cdot \mu_i (t) \mathrm{d} \langle \log \mu_i \rangle (t)$ in an equity market consisting of a fixed number $d$ of assets with capitalization weights $\mu_i (\cdot)$ is an observable and nondecreasing function of time. If this observable of the market is not just nondecreasing, but actually grows at a rate which is bounded away from zero, then strong arbitrage can be constructed relative to the market over sufficiently long time horizons. It has been an open issue for more than ten years, whether such strong outperformance of the market is possible also over arbitrary time horizons under the stated condition. We show that this is not possible in general, thus settling this long-open question. We also show that, under appropriate additional conditions, outperformance over any time horizon indeed becomes possible, and exhibit investment strategies that effect it.

Date: 2016-08
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
http://arxiv.org/pdf/1608.06121 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1608.06121

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:1608.06121