Canonical Supermartingale Couplings
Marcel Nutz and
Florian Stebegg
Papers from arXiv.org
Abstract:
Two probability distributions $\mu$ and $\nu$ in second stochastic order can be coupled by a supermartingale, and in fact by many. Is there a canonical choice? We construct and investigate two couplings which arise as optimizers for constrained Monge-Kantorovich optimal transport problems where only supermartingales are allowed as transports. Much like the Hoeffding-Fr\'echet coupling of classical transport and its symmetric counterpart, the antitone coupling, these can be characterized by order-theoretic minimality properties, as simultaneous optimal transports for certain classes of reward (or cost) functions, and through no-crossing conditions on their supports; however, our two couplings have asymmetric geometries. Remarkably, supermartingale optimal transport decomposes into classical and martingale transport in several ways.
Date: 2016-09, Revised 2017-11
New Economics Papers: this item is included in nep-sog
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://arxiv.org/pdf/1609.02867 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1609.02867
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().