Gated Neural Networks for Option Pricing: Rationality by Design
Yongxin Yang,
Yu Zheng and
Timothy M. Hospedales
Papers from arXiv.org
Abstract:
We propose a neural network approach to price EU call options that significantly outperforms some existing pricing models and comes with guarantees that its predictions are economically reasonable. To achieve this, we introduce a class of gated neural networks that automatically learn to divide-and-conquer the problem space for robust and accurate pricing. We then derive instantiations of these networks that are 'rational by design' in terms of naturally encoding a valid call option surface that enforces no arbitrage principles. This integration of human insight within data-driven learning provides significantly better generalisation in pricing performance due to the encoded inductive bias in the learning, guarantees sanity in the model's predictions, and provides econometrically useful byproduct such as risk neutral density.
Date: 2016-09, Revised 2020-03
New Economics Papers: this item is included in nep-cmp
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/1609.07472 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1609.07472
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().