EconPapers    
Economics at your fingertips  
 

Clustering Approaches for Financial Data Analysis: a Survey

Fan Cai, Nhien-An Le-Khac and Tahar Kechadi

Papers from arXiv.org

Abstract: Nowadays, financial data analysis is becoming increasingly important in the business market. As companies collect more and more data from daily operations, they expect to extract useful knowledge from existing collected data to help make reasonable decisions for new customer requests, e.g. user credit category, confidence of expected return, etc. Banking and financial institutes have applied different data mining techniques to enhance their business performance. Among these techniques, clustering has been considered as a significant method to capture the natural structure of data. However, there are not many studies on clustering approaches for financial data analysis. In this paper, we evaluate different clustering algorithms for analysing different financial datasets varied from time series to transactions. We also discuss the advantages and disadvantages of each method to enhance the understanding of inner structure of financial datasets as well as the capability of each clustering method in this context.

Date: 2016-09
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)

Downloads: (external link)
http://arxiv.org/pdf/1609.08520 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1609.08520

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:1609.08520