Model-free bounds on Value-at-Risk using extreme value information and statistical distances
Thibaut Lux and
Antonis Papapantoleon
Papers from arXiv.org
Abstract:
We derive bounds on the distribution function, therefore also on the Value-at-Risk, of $\varphi(\mathbf X)$ where $\varphi$ is an aggregation function and $\mathbf X = (X_1,\dots,X_d)$ is a random vector with known marginal distributions and partially known dependence structure. More specifically, we analyze three types of available information on the dependence structure: First, we consider the case where extreme value information, such as the distributions of partial minima and maxima of $\mathbf X$, is available. In order to include this information in the computation of Value-at-Risk bounds, we utilize a reduction principle that relates this problem to an optimization problem over a standard Fr\'echet class, which can then be solved by means of the rearrangement algorithm or using analytical results. Second, we assume that the copula of $\mathbf X$ is known on a subset of its domain, and finally we consider the case where the copula of $\mathbf X$ lies in the vicinity of a reference copula as measured by a statistical distance. In order to derive Value-at-Risk bounds in the latter situations, we first improve the Fr\'echet--Hoeffding bounds on copulas so as to include this additional information on the dependence structure. Then, we translate the improved Fr\'echet--Hoeffding bounds to bounds on the Value-at-Risk using the so-called improved standard bounds. In numerical examples we illustrate that the additional information typically leads to a significant improvement of the bounds compared to the marginals-only case.
Date: 2016-10, Revised 2018-11
New Economics Papers: this item is included in nep-rmg
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/1610.09734 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1610.09734
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().