EconPapers    
Economics at your fingertips  
 

Pricing Perpetual Put Options by the Black-Scholes Equation with a Nonlinear Volatility Function

Maria Grossinho (), Yaser Kord Faghan and Daniel Sevcovic

Papers from arXiv.org

Abstract: We investigate qualitative and quantitative behavior of a solution of the mathematical model for pricing American style of perpetual put options. We assume the option price is a solution to the stationary generalized Black-Scholes equation in which the volatility function may depend on the second derivative of the option price itself. We prove existence and uniqueness of a solution to the free boundary problem. We derive a single implicit equation for the free boundary position and the closed form formula for the option price. It is a generalization of the well-known explicit closed form solution derived by Merton for the case of a constant volatility. We also present results of numerical computations of the free boundary position, option price and their dependence on model parameters.

Date: 2016-11, Revised 2017-11
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://arxiv.org/pdf/1611.00885 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1611.00885

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:1611.00885