EconPapers    
Economics at your fingertips  
 

Generalization of Doob Decomposition Theorem and Risk Assessment in Incomplete Markets

N. S. Gonchar

Papers from arXiv.org

Abstract: In the paper, we introduce the notion of a local regular supermartingale relative to a convex set of equivalent measures and prove for it the necessary and sufficient conditions of optional Doob decomposition in the discrete case. This Theorem is a generalization of the famous Doob decomposition onto the case of supermartingales relative to a convex set of equivalent measures. The description of all local regular supermartingales relative to a convex set of equivalent measures is presented. A notion of complete set of equivalent measures is introduced. We prove that every non negative bounded supermartingale relative to a complete set of equivalent measures is local regular. A new definition of fair price of contingent claim in incomplete market is given and a formula for fair price of Standard option of European type is found.

Date: 2016-11
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://arxiv.org/pdf/1611.09062 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1611.09062

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:1611.09062