Asymptotic approximation of optimal portfolio for small time horizons
Rohini Kumar and
Hussein Nasralah
Papers from arXiv.org
Abstract:
We consider the problem of portfolio optimization in a simple incomplete market and under a general utility function. By working with the associated Hamilton-Jacobi-Bellman partial differential equation (HJB PDE), we obtain a closed-form formula for a trading strategy which approximates the optimal trading strategy when the time horizon is small. This strategy is generated by a first order approximation to the value function. The approximate value function is obtained by constructing classical sub- and super-solutions to the HJB PDE using a formal expansion in powers of horizon time. Martingale inequalities are used to sandwich the true value function between the constructed sub- and super-solutions. A rigorous proof of the accuracy of the approximation formulas is given. We end with a heuristic scheme for extending our small-time approximating formulas to approximating formulas in a finite time horizon.
Date: 2016-11, Revised 2018-02
New Economics Papers: this item is included in nep-upt
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://arxiv.org/pdf/1611.09300 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1611.09300
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().