Economics at your fingertips  

Efficient asymptotic variance reduction when estimating volatility in high frequency data

Simon Clinet () and Yoann Potiron ()

Papers from

Abstract: This paper shows how to carry out efficient asymptotic variance reduction when estimating volatility in the presence of stochastic volatility and microstructure noise with the realized kernels (RK) from [Barndorff-Nielsen et al., 2008] and the quasi-maximum likelihood estimator (QMLE) studied in [Xiu, 2010]. To obtain such a reduction, we chop the data into B blocks, compute the RK (or QMLE) on each block, and aggregate the block estimates. The ratio of asymptotic variance over the bound of asymptotic efficiency converges as B increases to the ratio in the parametric version of the problem, i.e. 1.0025 in the case of the fastest RK Tukey-Hanning 16 and 1 for the QMLE. The impact of stochastic sampling times and jump in the price process is examined carefully. The finite sample performance of both estimators is investigated in simulations, while empirical work illustrates the gain in practice.

New Economics Papers: this item is included in nep-ecm, nep-ets and nep-mst
Date: 2017-01, Revised 2018-06
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3) Track citations by RSS feed

Downloads: (external link) Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link:

Access Statistics for this paper

More papers in Papers from
Bibliographic data for series maintained by arXiv administrators ().

Page updated 2019-03-31
Handle: RePEc:arx:papers:1701.01185