Modeling stochastic skew of FX options using SLV models with stochastic spot/vol correlation and correlated jumps
Andrey Itkin ()
Papers from arXiv.org
Abstract:
It is known that the implied volatility skew of FX options demonstrates a stochastic behavior which is called stochastic skew. In this paper we create stochastic skew by assuming the spot/instantaneous variance correlation to be stochastic. Accordingly, we consider a class of SLV models with stochastic correlation where all drivers - the spot, instantaneous variance and their correlation are modeled by Levy processes. We assume all diffusion components to be fully correlated as well as all jump components. A new fully implicit splitting finite-difference scheme is proposed for solving forward PIDE which is used when calibrating the model to market prices of the FX options with different strikes and maturities. The scheme is unconditionally stable, of second order of approximation in time and space, and achieves a linear complexity in each spatial direction. The results of simulation obtained by using this model demonstrate capacity of the presented approach in modeling stochastic skew.
Date: 2017-01, Revised 2017-01
New Economics Papers: this item is included in nep-upt
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://arxiv.org/pdf/1701.02821 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1701.02821
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().