A Spatial Interpolation Framework for Efficient Valuation of Large Portfolios of Variable Annuities
Seyed Amir Hejazi,
Kenneth R. Jackson and
Guojun Gan
Papers from arXiv.org
Abstract:
Variable Annuity (VA) products expose insurance companies to considerable risk because of the guarantees they provide to buyers of these products. Managing and hedging these risks requires insurers to find the value of key risk metrics for a large portfolio of VA products. In practice, many companies rely on nested Monte Carlo (MC) simulations to find key risk metrics. MC simulations are computationally demanding, forcing insurance companies to invest hundreds of thousands of dollars in computational infrastructure per year. Moreover, existing academic methodologies are focused on fair valuation of a single VA contract, exploiting ideas in option theory and regression. In most cases, the computational complexity of these methods surpasses the computational requirements of MC simulations. Therefore, academic methodologies cannot scale well to large portfolios of VA contracts. In this paper, we present a framework for valuing such portfolios based on spatial interpolation. We provide a comprehensive study of this framework and compare existing interpolation schemes. Our numerical results show superior performance, in terms of both computational efficiency and accuracy, for these methods compared to nested MC simulations. We also present insights into the challenge of finding an effective interpolation scheme in this framework, and suggest guidelines that help us build a fully automated scheme that is efficient and accurate.
Date: 2017-01
New Economics Papers: this item is included in nep-cmp and nep-rmg
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://arxiv.org/pdf/1701.04134 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1701.04134
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().