EconPapers    
Economics at your fingertips  
 

A geometric approach to the transfer problem for a finite number of traders

Tomohiro Uchiyama

Papers from arXiv.org

Abstract: We present a complete characterization of the classical transfer problem for an exchange economy with an arbitrary finite number of traders. Our method is geometric, using an equilibrium manifold developed by Debreu, Mas-Colell, and Balasko. We show that for a regular equilibrium the transfer problem arises if and only if the index at the equilibrium is $-1$. This implies that the transfer problem does not happen if the equilibrium is Walras tatonnement stable. Our result generalizes Balasko's analogous result for an exchange economy with two traders.

Date: 2017-01
New Economics Papers: this item is included in nep-mic
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://arxiv.org/pdf/1701.04491 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1701.04491

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:1701.04491