Economics at your fingertips  

Understanding food inflation in India: A Machine Learning approach

Akash Malhotra and Mayank Maloo

Papers from

Abstract: Over the past decade, the stellar growth of Indian economy has been challenged by persistently high levels of inflation, particularly in food prices. The primary reason behind this stubborn food inflation is mismatch in supply-demand, as domestic agricultural production has failed to keep up with rising demand owing to a number of proximate factors. The relative significance of these factors in determining the change in food prices have been analysed using gradient boosted regression trees (BRT), a machine learning technique. The results from BRT indicates all predictor variables to be fairly significant in explaining the change in food prices, with MSP and farm wages being relatively more important than others. International food prices were found to have limited relevance in explaining the variation in domestic food prices. The challenge of ensuring food and nutritional security for growing Indian population with rising incomes needs to be addressed through resolute policy reforms.

New Economics Papers: this item is included in nep-agr
Date: 2017-01
References: View references in EconPapers View complete reference list from CitEc
Citations Track citations by RSS feed

Downloads: (external link) Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link:

Access Statistics for this paper

More papers in Papers from
Series data maintained by arXiv administrators ().

Page updated 2017-09-29
Handle: RePEc:arx:papers:1701.08789