Towards a taxonomy of learning dynamics in 2 x 2 games
Marco Pangallo (),
James Sanders,
Tobias Galla and
J. Farmer
Papers from arXiv.org
Abstract:
Do boundedly rational players learn to choose equilibrium strategies as they play a game repeatedly? A large literature in behavioral game theory has proposed and experimentally tested various learning algorithms, but a comparative analysis of their equilibrium convergence properties is lacking. In this paper we analyze Experience-Weighted Attraction (EWA), which generalizes fictitious play, best-response dynamics, reinforcement learning and also replicator dynamics. Studying $2\times 2$ games for tractability, we recover some well-known results in the limiting cases in which EWA reduces to the learning rules that it generalizes, but also obtain new results for other parameterizations. For example, we show that in coordination games EWA may only converge to the Pareto-efficient equilibrium, never reaching the Pareto-inefficient one; that in Prisoner Dilemma games it may converge to fixed points of mutual cooperation; and that limit cycles or chaotic dynamics may be more likely with longer or shorter memory of previous play.
Date: 2017-01, Revised 2021-09
New Economics Papers: this item is included in nep-gth and nep-hpe
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://arxiv.org/pdf/1701.09043 Latest version (application/pdf)
Related works:
Journal Article: Towards a taxonomy of learning dynamics in 2 × 2 games (2022) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1701.09043
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().