EconPapers    
Economics at your fingertips  
 

Efficient Policy Learning

Susan Athey () and Stefan Wager

Papers from arXiv.org

Abstract: In many areas, practitioners seek to use observational data to learn a treatment assignment policy that satisfies application-specific constraints, such as budget, fairness, simplicity, or other functional form constraints. For example, policies may be restricted to take the form of decision trees based on a limited set of easily observable individual characteristics. We propose a new approach to this problem motivated by the theory of semiparametrically efficient estimation. Our method can be used to optimize either binary treatments or infinitesimal nudges to continuous treatments, and can leverage observational data where causal effects are identified using a variety of strategies, including selection on observables and instrumental variables. Given a doubly robust estimator of the causal effect of assigning everyone to treatment, we develop an algorithm for choosing whom to treat, and establish strong guarantees for the asymptotic utilitarian regret of the resulting policy.

Date: 2017-02, Revised 2019-09
New Economics Papers: this item is included in nep-ecm and nep-rmg
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2) Track citations by RSS feed

Downloads: (external link)
http://arxiv.org/pdf/1702.02896 Latest version (application/pdf)

Related works:
Working Paper: Efficient Policy Learning (2017) Downloads
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1702.02896

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2020-01-23
Handle: RePEc:arx:papers:1702.02896