Incremental computation of block triangular matrix exponentials with application to option pricing
Daniel Kressner,
Robert Luce and
Francesco Statti
Papers from arXiv.org
Abstract:
We study the problem of computing the matrix exponential of a block triangular matrix in a peculiar way: Block column by block column, from left to right. The need for such an evaluation scheme arises naturally in the context of option pricing in polynomial diffusion models. In this setting a discretization process produces a sequence of nested block triangular matrices, and their exponentials are to be computed at each stage, until a dynamically evaluated criterion allows to stop. Our algorithm is based on scaling and squaring. By carefully reusing certain intermediate quantities from one step to the next, we can efficiently compute such a sequence of matrix exponentials.
Date: 2017-03, Revised 2017-06
New Economics Papers: this item is included in nep-cmp
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://arxiv.org/pdf/1703.00182 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1703.00182
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().