A note on conditional covariance matrices for elliptical distributions
Piotr Jaworski and
Marcin Pitera
Papers from arXiv.org
Abstract:
In this short note we provide an analytical formula for the conditional covariance matrices of the elliptically distributed random vectors, when the conditioning is based on the values of any linear combination of the marginal random variables. We show that one could introduce the univariate invariant depending solely on the conditioning set, which greatly simplifies the calculations. As an application, we show that one could define uniquely defined quantile-based sets on which conditional covariance matrices must be equal to each other if only the vector is multivariate normal. The similar results are obtained for conditional correlation matrices of the general elliptic case.
Date: 2017-03
New Economics Papers: this item is included in nep-ecm
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://arxiv.org/pdf/1703.00918 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1703.00918
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().