Mini-symposium on automatic differentiation and its applications in the financial industry
S\'ebastien Geeraert,
Charles-Albert Lehalle,
Barak Pearlmutter,
Olivier Pironneau and
Adil Reghai
Additional contact information
S\'ebastien Geeraert: LJLL
Barak Pearlmutter: LJLL
Olivier Pironneau: LJLL
Papers from arXiv.org
Abstract:
Automatic differentiation is involved for long in applied mathematics as an alternative to finite difference to improve the accuracy of numerical computation of derivatives. Each time a numerical minimization is involved, automatic differentiation can be used. In between formal derivation and standard numerical schemes, this approach is based on software solutions applying mechanically the chain rule to obtain an exact value for the desired derivative. It has a cost in memory and cpu consumption. For participants of financial markets (banks, insurances, financial intermediaries, etc), computing derivatives is needed to obtain the sensitivity of its exposure to well-defined potential market moves. It is a way to understand variations of their balance sheets in specific cases. Since the 2008 crisis, regulation demand to compute this kind of exposure to many different case, to be sure market participants are aware and ready to face a wide spectrum of configurations. This paper shows how automatic differentiation provides a partial answer to this recent explosion of computation to perform. One part of the answer is a straightforward application of Adjoint Algorithmic Differentiation (AAD), but it is not enough. Since financial sensitivities involves specific functions and mix differentiation with Monte-Carlo simulations, dedicated tools and associated theoretical results are needed. We give here short introductions to typical cases arising when one use AAD on financial markets.
Date: 2017-03, Revised 2017-06
New Economics Papers: this item is included in nep-cmp
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://arxiv.org/pdf/1703.02311 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1703.02311
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().