Topological Data Analysis of Financial Time Series: Landscapes of Crashes
Marian Gidea and
Yuri Katz
Papers from arXiv.org
Abstract:
We explore the evolution of daily returns of four major US stock market indices during the technology crash of 2000, and the financial crisis of 2007-2009. Our methodology is based on topological data analysis (TDA). We use persistence homology to detect and quantify topological patterns that appear in multidimensional time series. Using a sliding window, we extract time-dependent point cloud data sets, to which we associate a topological space. We detect transient loops that appear in this space, and we measure their persistence. This is encoded in real-valued functions referred to as a 'persistence landscapes'. We quantify the temporal changes in persistence landscapes via their $L^p$-norms. We test this procedure on multidimensional time series generated by various non-linear and non-equilibrium models. We find that, in the vicinity of financial meltdowns, the $L^p$-norms exhibit strong growth prior to the primary peak, which ascends during a crash. Remarkably, the average spectral density at low frequencies of the time series of $L^p$-norms of the persistence landscapes demonstrates a strong rising trend for 250 trading days prior to either dotcom crash on 03/10/2000, or to the Lehman bankruptcy on 09/15/2008. Our study suggests that TDA provides a new type of econometric analysis, which goes beyond the standard statistical measures. The method can be used to detect early warning signals of imminent market crashes. We believe that this approach can be used beyond the analysis of financial time series presented here.
Date: 2017-03, Revised 2017-04
New Economics Papers: this item is included in nep-ecm, nep-ets and nep-rmg
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://arxiv.org/pdf/1703.04385 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1703.04385
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().