EconPapers    
Economics at your fingertips  
 

How well do experience curves predict technological progress? A method for making distributional forecasts

François Lafond (), Aimee Gotway Bailey, Jan David Bakker, Dylan Rebois, Rubina Zadourian, Patrick McSharry and J. Farmer ()

Papers from arXiv.org

Abstract: Experience curves are widely used to predict the cost benefits of increasing the deployment of a technology. But how good are such forecasts? Can one predict their accuracy a priori? In this paper we answer these questions by developing a method to make distributional forecasts for experience curves. We test our method using a dataset with proxies for cost and experience for 51 products and technologies and show that it works reasonably well. The framework that we develop helps clarify why the experience curve method often gives similar results to simply assuming that costs decrease exponentially. To illustrate our method we make a distributional forecast for prices of solar photovoltaic modules.

New Economics Papers: this item is included in nep-for
Date: 2017-03, Revised 2017-09
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3) Track citations by RSS feed

Downloads: (external link)
http://arxiv.org/pdf/1703.05979 Latest version (application/pdf)

Related works:
Journal Article: How well do experience curves predict technological progress? A method for making distributional forecasts (2018) Downloads
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1703.05979

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2019-06-20
Handle: RePEc:arx:papers:1703.05979