Optimal Portfolio under Fractional Stochastic Environment
Jean-Pierre Fouque and
Ruimeng Hu
Papers from arXiv.org
Abstract:
Rough stochastic volatility models have attracted a lot of attentions recently, in particular for the linear option pricing problem. In this paper, starting with power utilities, we propose to use a martingale distortion representation of the optimal value function for the nonlinear asset allocation problem in a (non-Markovian) fractional stochastic environment (for all Hurst index $H \in (0,1)$). We rigorously establish a first order approximation of the optimal value, where the return and volatility of the underlying asset are functions of a stationary slowly varying fractional Ornstein-Uhlenbeck process. We prove that this approximation can be also generated by a fixed zeroth order trading strategy providing an explicit strategy which is asymptotically optimal in all admissible controls. Furthermore, we extend the discussion to general utility functions, and obtain the asymptotic optimality of this fixed strategy in a specific family of admissible strategies.
Date: 2017-03, Revised 2017-12
New Economics Papers: this item is included in nep-upt
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://arxiv.org/pdf/1703.06969 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1703.06969
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators (help@arxiv.org).