Data and uncertainty in extreme risks - a nonlinear expectations approach
Samuel N. Cohen
Papers from arXiv.org
Abstract:
Estimation of tail quantities, such as expected shortfall or Value at Risk, is a difficult problem. We show how the theory of nonlinear expectations, in particular the Data-robust expectation introduced in [5], can assist in the quantification of statistical uncertainty for these problems. However, when we are in a heavy-tailed context (in particular when our data are described by a Pareto distribution, as is common in much of extreme value theory), the theory of [5] is insufficient, and requires an additional regularization step which we introduce. By asking whether this regularization is possible, we obtain a qualitative requirement for reliable estimation of tail quantities and risk measures, in a Pareto setting.
Date: 2017-05, Revised 2018-02
New Economics Papers: this item is included in nep-rmg and nep-upt
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://arxiv.org/pdf/1705.08301 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1705.08301
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators (help@arxiv.org).