Zipf's Law for Atlas Models
Ricardo Fernholz and
Robert Fernholz
Papers from arXiv.org
Abstract:
A set of data with positive values follows a Pareto distribution if the log-log plot of value versus rank is approximately a straight line. A Pareto distribution satisfies Zipf's law if the log-log plot has a slope of -1. Since many types of ranked data follow Zipf's law, it is considered a form of universality. We propose a mathematical explanation for this phenomenon based on Atlas models and first-order models, systems of positive continuous semimartingales with parameters that depend only on rank. We show that the stable distribution of an Atlas model will follow Zipf's law if and only if two natural conditions, conservation and completeness, are satisfied. Since Atlas models and first-order models can be constructed to approximate systems of time-dependent rank-based data, our results can explain the universality of Zipf's law for such systems. However, ranked data generated by other means may follow non-Zipfian Pareto distributions. Hence, our results explain why Zipf's law holds for word frequency, firm size, household wealth, and city size, while it does not hold for earthquake magnitude, cumulative book sales, the intensity of solar flares, and the intensity of wars, all of which follow non-Zipfian Pareto distributions.
Date: 2017-07, Revised 2020-06
New Economics Papers: this item is included in nep-hme
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://arxiv.org/pdf/1707.04285 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1707.04285
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators (help@arxiv.org).