An Alternative Estimation Method of a Time-Varying Parameter Model
Mikio Ito,
Akihiko Noda and
Tatsuma Wada
Papers from arXiv.org
Abstract:
A non-Bayesian, regression-based or generalized least squares (GLS)-based approach is formally proposed to estimate a class of time-varying AR parameter models. This approach has partly been used by Ito et al. (2014, 2016a,b), and is proven to be efficient because, unlike conventional methods, it does not require Kalman filtering and smoothing procedures, but yields a smoothed estimate that is identical to the Kalman-smoothed estimate. Unlike the maximum likelihood estimator, the possibility of the pile-up problem is negligible. In addition, this approach enables us to deal with stochastic volatility models, models with a time-dependent variance-covariance matrix, and models with non-Gaussian errors that allow us to deal with abrupt changes or structural breaks in time-varying parameters.
Date: 2017-07, Revised 2017-12
New Economics Papers: this item is included in nep-ecm and nep-ets
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://arxiv.org/pdf/1707.06837 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1707.06837
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().