Dynamic correlations at different time-scales with Empirical Mode Decomposition
Noemi Nava,
T. Di Matteo and
Tomaso Aste
Papers from arXiv.org
Abstract:
The Empirical Mode Decomposition (EMD) provides a tool to characterize time series in terms of its implicit components oscillating at different time-scales. We apply this decomposition to intraday time series of the following three financial indices: the S\&P 500 (USA), the IPC (Mexico) and the VIX (volatility index USA), obtaining time-varying multidimensional cross-correlations at different time-scales. The correlations computed over a rolling window are compared across the three indices, across the components at different time-scales, at different lags and over time. We uncover a rich heterogeneity of interactions which depends on the time-scale and has important led-lag relations which can have practical use for portfolio management, risk estimation and investments.
Date: 2017-08
New Economics Papers: this item is included in nep-ets
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://arxiv.org/pdf/1708.06586 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1708.06586
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().