EconPapers    
Economics at your fingertips  
 

Semiparametric GARCH via Bayesian model averaging

Wilson Ye Chen and Richard H. Gerlach

Papers from arXiv.org

Abstract: As the dynamic structure of the financial markets is subject to dramatic changes, a model capable of providing consistently accurate volatility estimates must not make strong assumptions on how prices change over time. Most volatility models impose a particular parametric functional form that relates an observed price change to a volatility forecast (news impact function). We propose a new class of functional coefficient semiparametric volatility models where the news impact function is allowed to be any smooth function, and study its ability to estimate volatilities compared to the well known parametric proposals, in both a simulation study and an empirical study with real financial data. We estimate the news impact function using a Bayesian model averaging approach, implemented via a carefully developed Markov chain Monte Carlo (MCMC) sampling algorithm. Using simulations we show that our flexible semiparametric model is able to learn the shape of the news impact function from the observed data. When applied to real financial time series, our new model suggests that the news impact functions are significantly different in shapes for different asset types, but are similar for the assets of the same type.

Date: 2017-08
New Economics Papers: this item is included in nep-ecm and nep-ets
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://arxiv.org/pdf/1708.07587 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1708.07587

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:1708.07587