EconPapers    
Economics at your fingertips  
 

Marginal and dependence uncertainty: bounds, optimal transport, and sharpness

Daniel Bartl, Michael Kupper, Thibaut Lux, Antonis Papapantoleon and Stephan Eckstein
Additional contact information
Daniel Bartl: appendix
Michael Kupper: appendix
Thibaut Lux: appendix
Antonis Papapantoleon: appendix
Stephan Eckstein: appendix

Papers from arXiv.org

Abstract: Motivated by applications in model-free finance and quantitative risk management, we consider Fr\'echet classes of multivariate distribution functions where additional information on the joint distribution is assumed, while uncertainty in the marginals is also possible. We derive optimal transport duality results for these Fr\'echet classes that extend previous results in the related literature. These proofs are based on representation results for increasing convex functionals and the explicit computation of the conjugates. We show that the dual transport problem admits an explicit solution for the function $f=1_B$, where $B$ is a rectangular subset of $\mathbb R^d$, and provide an intuitive geometric interpretation of this result. The improved Fr\'echet--Hoeffding bounds provide ad-hoc upper bounds for these Fr\'echet classes. We show that the improved Fr\'echet--Hoeffding bounds are pointwise sharp for these classes in the presence of uncertainty in the marginals, while a counterexample yields that they are not pointwise sharp in the absence of uncertainty in the marginals, even in dimension 2. The latter result sheds new light on the improved Fr\'echet--Hoeffding bounds, since Tankov [30] has showed that, under certain conditions, these bounds are sharp in dimension 2.

Date: 2017-09, Revised 2018-08
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://arxiv.org/pdf/1709.00641 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1709.00641

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:1709.00641