EconPapers    
Economics at your fingertips  
 

Is completeness necessary? Estimation in nonidentified linear models

Andrii Babii and Jean-Pierre Florens

Papers from arXiv.org

Abstract: Modern data analysis depends increasingly on estimating models via flexible high-dimensional or nonparametric machine learning methods, where the identification of structural parameters is often challenging and untestable. In linear settings, this identification hinges on the completeness condition, which requires the nonsingularity of a high-dimensional matrix or operator and may fail for finite samples or even at the population level. Regularized estimators provide a solution by enabling consistent estimation of structural or average structural functions, sometimes even under identification failure. We show that the asymptotic distribution in these cases can be nonstandard. We develop a comprehensive theory of regularized estimators, which include methods such as high-dimensional ridge regularization, gradient descent, and principal component analysis (PCA). The results are illustrated for high-dimensional and nonparametric instrumental variable regressions and are supported through simulation experiments.

Date: 2017-09, Revised 2025-01
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)

Downloads: (external link)
http://arxiv.org/pdf/1709.03473 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1709.03473

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:1709.03473