EconPapers    
Economics at your fingertips  
 

Local Volatility Calibration by Optimal Transport

Ivan Guo, Gr\'egoire Loeper and Shiyi Wang

Papers from arXiv.org

Abstract: The calibration of volatility models from observable option prices is a fundamental problem in quantitative finance. The most common approach among industry practitioners is based on the celebrated Dupire's formula [6], which requires the knowledge of vanilla option prices for a continuum of strikes and maturities that can only be obtained via some form of price interpolation. In this paper, we propose a new local volatility calibration technique using the theory of optimal transport. We formulate a time continuous martingale optimal transport problem, which seeks a martingale diffusion process that matches the known densities of an asset price at two different dates, while minimizing a chosen cost function. Inspired by the seminal work of Benamou and Brenier [1], we formulate the problem as a convex optimization problem, derive its dual formulation, and solve it numerically via an augmented Lagrangian method and the alternative direction method of multipliers (ADMM) algorithm. The solution effectively reconstructs the dynamic of the asset price between the two dates by recovering the optimal local volatility function, without requiring any time interpolation of the option prices.

Date: 2017-09, Revised 2018-06
References: Add references at CitEc
Citations:

Published in 2017 MATRIX Annals, Vol. 2, 2019, 51-64

Downloads: (external link)
http://arxiv.org/pdf/1709.08075 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1709.08075

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:1709.08075