Distributions of Centrality on Networks
Krishna Dasaratha
Papers from arXiv.org
Abstract:
We provide a framework for determining the centralities of agents in a broad family of random networks. Current understanding of network centrality is largely restricted to deterministic settings, but practitioners frequently use random network models to accommodate data limitations or prove asymptotic results. Our main theorems show that on large random networks, centrality measures are close to their expected values with high probability. We illustrate the economic consequences of these results by presenting three applications: (1) In network formation models based on community structure (called stochastic block models), we show network segregation and differences in community size produce inequality. Benefits from peer effects tend to accrue disproportionately to bigger and better-connected communities. (2) When link probabilities depend on geography, we can compute and compare the centralities of agents in different locations. (3) In models where connections depend on several independent characteristics, we give a formula that determines centralities 'characteristic-by-characteristic'. The basic techniques from these applications, which use the main theorems to reduce questions about random networks to deterministic calculations, extend to many network games.
Date: 2017-09, Revised 2019-06
New Economics Papers: this item is included in nep-net, nep-soc and nep-ure
References: View references in EconPapers View complete reference list from CitEc
Citations:
Published in Games and Economic Behavior, Vol. 122, July 2020, 1-27
Downloads: (external link)
http://arxiv.org/pdf/1709.10402 Latest version (application/pdf)
Related works:
Journal Article: Distributions of centrality on networks (2020) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1709.10402
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().