EconPapers    
Economics at your fingertips  
 

Sequential Design and Spatial Modeling for Portfolio Tail Risk Measurement

Michael Ludkovski and James Risk

Papers from arXiv.org

Abstract: We consider calculation of capital requirements when the underlying economic scenarios are determined by simulatable risk factors. In the respective nested simulation framework, the goal is to estimate portfolio tail risk, quantified via VaR or TVaR of a given collection of future economic scenarios representing factor levels at the risk horizon. Traditionally, evaluating portfolio losses of an outer scenario is done by computing a conditional expectation via inner-level Monte Carlo and is computationally expensive. We introduce several inter-related machine learning techniques to speed up this computation, in particular by properly accounting for the simulation noise. Our main workhorse is an advanced Gaussian Process (GP) regression approach which uses nonparametric spatial modeling to efficiently learn the relationship between the stochastic factors defining scenarios and corresponding portfolio value. Leveraging this emulator, we develop sequential algorithms that adaptively allocate inner simulation budgets to target the quantile region. The GP framework also yields better uncertainty quantification for the resulting VaR/TVaR estimators that reduces bias and variance compared to existing methods. We illustrate the proposed strategies with two case-studies in two and six dimensions.

Date: 2017-10, Revised 2018-05
New Economics Papers: this item is included in nep-big, nep-cmp and nep-rmg
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)

Downloads: (external link)
http://arxiv.org/pdf/1710.05204 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1710.05204

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:1710.05204