EconPapers    
Economics at your fingertips  
 

Quantization goes Polynomial

Giorgia Callegaro, Lucio Fiorin and Andrea Pallavicini

Papers from arXiv.org

Abstract: Quantization algorithms have been successfully adopted to option pricing in finance thanks to the high convergence rate of the numerical approximation. In particular, very recently, recursive marginal quantization has been proven to be a flexible and versatile tool when applied to stochastic volatility processes. In this paper we apply for the first time quantization techniques to the family of polynomial processes, by exploiting their peculiar nature. We focus our analysis on the stochastic volatility Jacobi process, by presenting two alternative quantization procedures: the first is a new discretization technique, whose foundation lies on the polynomial structure of the underlying process and which is suitable for vanilla option pricing, the second is based on recursive marginal quantization and it allows for pricing of (vanilla and) exotic derivatives. We prove theoretical results to assess the induced approximation errors, and we describe in numerical examples practical tools for fast vanilla and exotic option pricing.

Date: 2017-10, Revised 2019-12
New Economics Papers: this item is included in nep-cmp
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://arxiv.org/pdf/1710.11435 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1710.11435

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:1710.11435