A continuous selection for optimal portfolios under convex risk measures does not always exist
Michel Baes and
Cosimo Munari
Papers from arXiv.org
Abstract:
One of the crucial problems in mathematical finance is to mitigate the risk of a financial position by setting up hedging positions of eligible financial securities. This leads to focusing on set-valued maps associating to any financial position the set of those eligible payoffs that reduce the risk of the position to a target acceptable level at the lowest possible cost. Among other properties of such maps, the ability to ensure lower semicontinuity and continuous selections is key from an operational perspective. It is known that lower semicontinuity generally fails in an infinite-dimensional setting. In this note we show that neither lower semicontinuity nor, more surprisingly, the existence of continuous selections can be a priori guaranteed even in a finite-dimensional setting. In particular, this failure is possible under arbitrage-free markets and convex risk measures.
Date: 2017-10
New Economics Papers: this item is included in nep-rmg
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/1711.00370 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1711.00370
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators (help@arxiv.org).