Optimizing S-shaped utility and implications for risk management
John Armstrong and
Damiano Brigo
Papers from arXiv.org
Abstract:
We consider market players with tail-risk-seeking behaviour as exemplified by the S-shaped utility introduced by Kahneman and Tversky. We argue that risk measures such as value at risk (VaR) and expected shortfall (ES) are ineffective in constraining such players. We show that, in many standard market models, product design aimed at utility maximization is not constrained at all by VaR or ES bounds: the maximized utility corresponding to the optimal payoff is the same with or without ES constraints. By contrast we show that, in reasonable markets, risk management constraints based on a second more conventional concave utility function can reduce the maximum S-shaped utility that can be achieved by the investor, even if the constraining utility function is only rather modestly concave. It follows that product designs leading to unbounded S-shaped utilities will lead to unbounded negative expected constraining utilities when measured with such conventional utility functions. To prove these latter results we solve a general problem of optimizing an investor expected utility under risk management constraints where both investor and risk manager have conventional concave utility functions, but the investor has limited liability. We illustrate our results throughout with the example of the Black--Scholes option market. These results are particularly important given the historical role of VaR and that ES was endorsed by the Basel committee in 2012--2013.
Date: 2017-11, Revised 2018-01
New Economics Papers: this item is included in nep-rmg and nep-upt
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/1711.00443 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1711.00443
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().