Optimal investment-consumption and life insurance selection problem under inflation. A BSDE approach
Calisto Guambe and
Rodwell Kufakunesu
Papers from arXiv.org
Abstract:
We discuss an optimal investment, consumption and insurance problem of a wage earner under inflation. Assume a wage earner investing in a real money account and three asset prices, namely: a real zero coupon bond, the inflation-linked real money account and a risky share described by jump-diffusion processes. Using the theory of quadratic-exponential backward stochastic differential equation (BSDE) with jumps approach, we derive the optimal strategy for the two typical utilities (exponential and power) and the value function is characterized as a solution of BSDE with jumps. Finally, we derive the explicit solutions for the optimal investment in both cases of exponential and power utility functions for a diffusion case.
Date: 2017-11
New Economics Papers: this item is included in nep-ias, nep-mac and nep-upt
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://arxiv.org/pdf/1711.01760 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1711.01760
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().