Functional central limit theorems for rough volatility
Blanka Horvath,
Antoine Jacquier (),
Aitor Muguruza and
Andreas Sojmark
Papers from arXiv.org
Abstract:
The non-Markovian nature of rough volatility processes makes Monte Carlo methods challenging and it is in fact a major challenge to develop fast and accurate simulation algorithms. We provide an efficient one for stochastic Volterra processes, based on an extension of Donsker's approximation of Brownian motion to the fractional Brownian case with arbitrary Hurst exponent $H \in (0,1)$. Some of the most relevant consequences of this `rough Donsker (rDonsker) Theorem' are functional weak convergence results in Skorokhod space for discrete approximations of a large class of rough stochastic volatility models. This justifies the validity of simple and easy-to-implement Monte-Carlo methods, for which we provide detailed numerical recipes. We test these against the current benchmark Hybrid scheme~\cite{BLP17} and find remarkable agreement (for a large range of values of~$H$). This rDonsker Theorem further provides a weak convergence proof for the Hybrid scheme itself, and allows to construct binomial trees for rough volatility models, the first available scheme (in the rough volatility context) for early exercise options such as American or Bermudan options.
Date: 2017-11, Revised 2023-11
New Economics Papers: this item is included in nep-ets
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://arxiv.org/pdf/1711.03078 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1711.03078
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().